Electrocatalytic Activity of the Ni57.3Co42.7 Alloy for the Hydrogen Evolution
نویسندگان
چکیده
The hydrogen evolution reaction (HER) on Ni57.3Co42.7 alloy and its main components, polycrystalline nickel and cobalt was investigated in 1.0 mol L–1 NaOH solution at 20 °C using cyclic voltammetry, pseudo-steady-state linear polarization and electrochemical impedance spectroscopy methods. The purpose of investigation was to evaluate the effect of cobalt on the intrinsic catalytic activity of nickel. Cyclic voltammetry measurements, performed in a wide potential range from hydrogen to oxygen evolution, clearly showed the potential range of formation and reduction metal oxides / hydroxides. Electrocatalytic activity of the investigated electrodes was derived from pseudo-steadystate linear polarization curves, Tafel plots and electrochemical impedance spectroscopy (EIS). Electrochemical impedance spectra obtained in potential range of hydrogen evolution were modeled with modified Randles electric equivalent circuit. Kinetic parameters (the exchange current density and the cathodic Tafel slope), determined from linear polarization measurements and electrochemical impedance measurements, were compared for all three electrode materials. Ni57.3Co42.7 catalyst has shown better electrocatalytic activity compared with pure Co. The main pathway for the HER at investigated electrode materials is Volmer-Heyrovski with Heyrovsky as the rate determining step.
منابع مشابه
Preparation of Ni-P-CeO2 electrode and study on electrocatalytic properties for hydrogen evolution reaction
In this study ternary Ni-P-CeO2 catalysts were first synthesized by the Co-electrodeposition method on a copper substrate and then characterized by means of microstructural and electrochemical techniques toward a hydrogen evolution reaction (HER). Also, for comparison other catalysts such as Ni-CeO2, Ni-P, and Ni were prepared and characterized by the same methods. The microstructure of the inv...
متن کاملIn situ activation of a Ni catalyst with Mo ion for hydrogen evolution reaction in alkaline solution
In this study Ni catalyst have been activated during hydrogen evolution reaction (HER) by adding Mo ions into the alkaline electrolyte. After dissolving different amounts of ammonium molybdate in the 1M NaOH as electrolyte, Ni catalyst was used as cathode for HER. Afterwards a comparison between hydrogen overpotential measured in Ni catalyst with and without in situ activation has been made; th...
متن کاملHydrogen evolution activity of NiMo-MoO2 produced by mechanical milling
In this study, mechanical alloying was done by a high-energy planetary ball milling technique. A mixture of NiO and MoO3 and graphite powders were used as initial materials. After milling of powder mixture with 40 wt.% additional graphite, a temperature of 400, 550 and 1000 °C for 1 h was considered for the heat treatment of powder mixture. Also, powder mixtures containing 60, 80 and 100 wt.% a...
متن کاملEffect of temperature on kinetics of the hydrogen evolution reaction on Ni-P-C cathodes in alkaline solution
The kinetics of hydrogen evolution reaction (HER) was studied in 1M NaOH at various temperatures (298 to 358 K) on Ni-P-C (composite electrodes. The electrochemical efficiency of the electrodes has been evaluated on the basis of electrochemical data obtained from the steady-state polarization Tafel curves, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in 1M NaOH solut...
متن کاملNi@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...
متن کامل